

COURSE PLAN

FIRST: BASIC INFORMATION

College				
College	: Karak College			
Department	: Engineering Department.			
Course				
Course Title	: Circuit Design			
Course Code	: 020406213			
Credit Hours	: 3 (1 Theoretical, 2 Practical)			
Prerequisite	: 020406112			
Instructor				
Name	:			
Office No.	:			
Tel (Ext)	:			
E-mail	:			
Office Hours	:			
Class Times				
Text Book				

• Circuit Design, Al-Balqa Applied University & KOICA, 2022.

References

- Simon Monk, "Make Your Own PCBs with Eagle" McGraw-Hill, 2014
- Clyde Coombs and Happy Holden, "**Printed Circuits Handbook**" 7th Ed., McGraw-Hill, 2016

SECOND: PROFESSIONAL INFORMATION

COURSE DESCRIPTION

This course explains how to implement an electronic circuit as a printed circuit board (PCB). It also deals with the design rules to be satisfied and efficient PCB design methods required by the industry. For PCB design, a dedicated program commonly used in industry will be used.

COURSE OBJECTIVES

The objectives of this course are to enable the student to do the following:

- Explain the basic principles for circuit design
- Apply the tools and techniques used for circuit design in their own PCB design
- Test and debug the operation of designed PCB by simulation

• Design a PCB that complies with industry standards

COURSE LEARNING OUTCOMES

By the end of the course, the students will be able to:

CLO1. Install and use PCB design software, EAGLE

CLO2. Examine the construction techniques that used to build a prototype

CLO3. Identify how to design PCB

CLO4. Determine the electronic components and types used in the simulation

CLO5. Explain how to build the simulated circuits

CLO6. Examine the measuring skills for electrical values by simulation

CLO7. Classify the tools used in circuit design

CLO8. Determine the circuit behavior

CLO9. Design their own PCM using EAGLE

Week	E SYLLABUS Topic	Topic details	Related LO	Proposed assignments
1	Rules and symbols in schematic	 Printed Circuit Boards Installing EAGLE Install Third-Party Software. 	CLO1	
2	Rules and symbols in schematic	Surface Mount and Through Hole.Prototyping boardsLoad an Example Project.	CLO2	
3	Design rule checking and create new PCB	 Creating a New Project. Add the Components. Join the components Together.	CLO3	
4	Design rule checking and create new PCB	 Electrical Rule Check. Laying Out the Board. Dragging Components onto the Board	CLO3	
5	Design rule checking and create new PCB	Resizing the Board.Routing.U.S. versus European Circuit Symbols	CLO3	
6	Component selection	 Through-Hole Resistors. SMD Resistors. Through-Hole Capacitors. SMD Capacitors. 	CLO4	
7	Component selection	 Through-Hole Transistors. SMD Transistors and Diodes. Through-Hole ICs (DIL). SMD ICs. Connectors and other components 	CLO4	
8		Mid exam		

Week	Торіс	Topic details	Related LO	Proposed assignments
9	Setting up PCB layers	 The Anatomy of the Schematic Editor. Common Commands. Other Commands	CLO5	
10	Setting up PCB layers	• Nets. • Buses.	CLO5	
11	Setting up PCB layers – Example Project	 Starting the Schematic. Adding the Components. Adding the Supplies. Adding the Nets. Assigning Net Classes. Running the ERC. 	CLO5	
12	Routing and completion of design	Experimenting.Layers.The Grid.Layout methods	CLO6	
13	Soldering	 General Tools. Tools for Surface-Mount Devices. Through-Hole Soldering Step by Step. 	CLO7	
14	Soldering	 Soldering Two- and Three-Legged Components. Soldering IC Packages. Using a Reflow Oven. 	CLO8	
15	An Arduino Shield	 Introducing Arduino. Shield Design. Arduino R3 Shield Template. A Four-Digit LED Example. 	CLO9	
16		Final exam week		

COURSE LEARNING RESOURCES

Teaching will be achieved using available resources including lectures, data show, and materials uploaded on the e-learning system.

ONLINE RESOURCES

- <u>www.element14.com/community/community/knode/cadsoft_eagle/forums/.</u>
- www.youtube.com/watch?v=1AXwjZoyNno.

www.cadsoftusa.com/downloads/libraries

ASSESSMANT TOOLS

Assessment Tools	%
0Projects and Quizzes	20%
MID Exam	30%
Final Exam	50%
Total Marks	100%

THIRD: COURSE RULES

ATTENDANCE RULES

Attendance and participation are extremely important, and the usual University rules will apply. Attendance will be recorded for each class. Absence of 10% will result in a first written warning. Absence of 15% of the course will result in a second warning. Absence of 20% or more will result in forfeiting the course and the student will not be permitted to attend the final examination. Should a student encounter any special circumstances (i.e. medical or personal), he/she is encouraged to discuss this with the instructor and written proof will be required to delete any absences from his/her attendance records.

GRADING SYSTEM

Example:

Grade	points
FAILED	0-49
PASSED	50-100

REMARKS

{The instructor can add any comments and directives such as the attendance policy and topics related to ethics}

COURSE COORDINATOR

Course Coordinator: Eng.mahmoud aljafari Department Head:

Signature: Eng.mahmoud aljafari Signature:

Date: Date: